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Apparently Odquist [ 11 first investigated the state of stress of a circular cylindrical shell, 
loaded along lines on a surface, in 19%. A shell reinforced at the endfaces by rigid bulk- 
heads aud loaded along a segment of the generatrix by a uniformly distributed radial and 
circumferential loading as well as a circumferential bending moment was considered here. 
The solution was constructed by starting from an approximate equation obtained under the 
assumption that there were no circumferential deformations and shears of the middle surface, 
and also no longitudinal bending moments and torques. At the same time the Shoessow and 

Kooistra experiments 121 (1945) h s owed that there is no foundation for not taking account 

of the longitudinal moment since the ratio between the longitudinal and circumferential ben- 
ding moments may reach 0.5. A freely supported shell, loaded along the generator by radial 
forces and circumferential moments, was considered in [3] in 1954 by utilizing shallow shell 
equations. The solution was constructed by starting from a system of homogeneous equa- 
tions for a shell slit along the loading line. The external forces and the desired quantities 
were expanded in Fourier series in the longitudinal coordinate. Such a method of solution 
is not efficient if the series for the external forces converges slowly. 

In considering herein a closed circular cylindrical shell loaded along an arbitrary line 
of the middle surface, the method of computation is based on using the Green’s function, 
the solution due to a concentrated force. Hence, a particular integral is constructed which 
corresponds to the solution of the problem for an infinite shell. The boundary conditions on 
the endfaces may be satisfied by adding on the solution of the homogeneous equations. 

1. It is known 141 that the solution of the system of equilibrium equations in displace- 
ments is equivalent to the solution of three separate linear differential equations in the 
three displacement functions yj : 

DYj + jXj = 0 (i = 1, 2, 3) (I.11 

where D is an eighth order linear partial differential operator; f is a known constant; X, are 
components of the external surface loading intensity directed, respectively, along the gen- 
erator, the arc of a circle, and along the circumference and normal to the shell surface. 

In considering closed cylindrical shells the functions 3 in (1.1) are periodic in the cir- 
cumferential direction. Let a linear force 9 with the components q, (j = 1, 2, 3) act along 
some arbitrary line 1 (to, 0,) of the shell surface. In this case the 4 in (1.1) may be repre- 

sented as 

xj (4, e, = ~ 5 qj (EO, eO) 6 (E - EO, e - e0) dl ( e=ii_, e=-$-) 
1 

dl= vw (1.2) 
Here z, y are the longitudinal and circumferential coordinates of the surface; R is the 

radius of the shell middle surface; a([, 8) a periodic delta-function which may be represen- 
ted in the form 

1147 
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We represent the solution of (1.1) by integrals analogous to (1.2): 

YjG, ej=& qj(L s 60) G (t - CO, 8 - 80) dl 
1 

(1.3) 

(1.4) 

For an arbitrary external ioading q1 the problem reduces to finding a Green’s function 
G independent of the form of pi. We have the following Eq. for G: 

DC (Et e) $ 6 CC, 0) = 0 (1.5) 

The solution of (1.5) is known. Juan [5] first obtained it in 1946 in considering the ef- 

fect of a concentrated radial force on a shallow cylindrical shell. In 1951 Darevskii [6] gen- 
eralized the solution of (1.5) for the shallow shell equations in the Love version. 

Knowing the solution (1.4) due to a normal linear force q, we can obtain the solution due 
to the linear bending moments M, and M, acting along the line I, if we understand these 
moments to be given by the limiting relationships 

MI = R $m, (2AEqs), 
+ 

Ma = R 1;~ (2AOqs) 

Such a solution is 

U’,fS: e,=fl&j[ Ml CEO, 0,) & + Mz (to,%) &] C (F - 40, 0 - 60) dE (1.6) 
1 

If the functions (1.4) have been found, then the axial a, the circumferential u, and the 
radial UJ displacements of the middle surface are determined by means of Formulas 

’ = ~ DjlYj, V = ~ DjaYj, W = ~ Dj3yj (1.7) 
i=l &I j=l 

where D,I = Dil are linear differential operators. For the shell theory version presented in 

the monograph [4] we have: 

IAl = -- m + 2 (2 - ~1 aga aea + 2 m + 

1 -Y aa a3 
( 

1+v 
k- r 

a5 a6 
D13= 2 vzp 

- - 
-Z@iF + 2 aa_(2-v)ac3ae3+ agae4 1 

Here v and h are the Poisson coefficient and shell thickness, respectively. The operator 
D corresponding to (1.8) is: 

a4 a0 aa a4 
D=V4V4+4x”a54f2!4-V)aaEpaea 2 ae+fj gpgi+2gjC+4apae~-f-ae~ d” (1.9) 

4x4 = * - v2 
a3 
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The underlined terms in (1.8) and (1.9)(*) correspond to the theory of shallow cylindrical 

shells. The displacements due to the moments Mt and M 2 are determined by the third mem- 

ber in (1.7) if q?m from (1.6) is substituted in place of q’,. 

Let el, es, co, xl, K~ respectively, denote the longitudinal and circumferential strains, 

the shear strain of the middle surface, and the longitudinal and circumferential bending 

strain. 
Taking account of (1.7) and (1.41, we obtain from geometric relationships 

3 

Qj (CO, 00) elj (E - 40, 0 - 00) dl 

The strains %, o, Rx,, Rx, are of analogous form, and are represented in terms of the 

appropriate Green’s functions &j, Oj, lclj, W&j. The stress resultants and moments are ex- 

pressed in terms of (1.10) from physical considerations. 

The described method is convenie’nt in that the solution of the problem is reduced to de- 

termining the Green’s function G from (1.5) independently of the form of the external forces. 
The strain and stress resultant components are determined by integration in Formulas of the 
type (I.10). The method is suitable for loadings acting along arbitrarily disposed lines, as 

well as for arbitrary surface loadings. It is conveniently used in problems where the stress 

resultant pi is to be determined. In this case it is necessary to solve integral equations. 

2. Taking account of (1.31, the particular solution of (1.5) is taken as 

G (C, 0) = - “/z&o (5) - $j G,, (4) co9 no (2.4) 

?&==I 

Substituting (2.1) into (1.51 for G,, (~$1, we obtain ordinary inhomogeneous differential 

equations whose solution is 

,-XlEl Gl(~)=co(i;)=~[~151s-~(~o~~F,+~i~~l ED] 
2 

%(F)=&- 2 
e-qT” I,4 I 

(a. cos pjnS + bj sin pp I F, 1) 
’ 

j=l 
PjQi (Pj’+ Qja) 

(2.3) 

where pj and qt are, respectively, the real and imaginary parts of the roots of the character- 

istic equation corresponding to the differential equation for Go@), wherein the values of 

q, are taken positive 

‘j = Pj IA2 F 4 (P~SQ~2 - Pzag2a) ~ “qjals ‘j = 9; f ~‘a ‘F 4 fPlaq12 - Pz’qz’) f 4dpja] (2.4) 

A = Iha d 4 (plb + paq#l;W + 4 (prql - p2#j, A = PI” - d - Pa* d q** 
The upper sign is taken in (2.4) for J’ = 

taining G,(t) that x2 9 1. 
1, and the lower for j = 2. It is assumed in ob- 

3. In general, the Green’s fnnctiona e+j, Oj, Xgj fi = 1, 2; j = 1, 2, 3), in Formulas of 
type (1.10) increase without limit in the neighborhood of the point c= &, 8 = 8,. We obtain 

the principal value &j”* Oj’, Xij” of these functions if we take Go from the solution of Eq. 

v*v*G” (E, 0) + 6 (E, 01 = 0 (3.1) 

in place of the Green’s function from (1.5). 
This solution is 

G” (4, 0) = - a$ ; q [(s151Y’+g(sl~,,2+15 (nIeI-ti,lco~n0--~lC17 
?I==1 

*c) Editor’s note: No terms have been underlined in the Russian original. 
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Operating on Go exactly as on G in obtaining the Green’s function in (1.10). and hence 

retaining only the highest derivatives in the differential operators for sij, Oj, xif (because 
only such operators may yield unbounded components for sift ‘L’j* Xii), we obtain 

M=-- ( x 1 v 
[ 

1+v 
- )qr+---- 2 ‘Pa 9 1 

n(1 fv) eIao I - -- 
8 (V% - 91) 

(3.2) 

where 

OlO = _ - ; [(I - 9 +l + (1 + v) ~21, wz” = - $ [2p - (1 + v) (pa] 

xmo = x&J = fi (1 + v) 1 
8aa 2 I E I - + In (ch f - cos e) I 

sh E 
2 chc-cosg 

Q= x nl[le-nIEI CosnfIsign~=--?_t i-ch4cosB 

2 (ch 4 - cos O)a n=l 

rp1= :; e-nlEl sin nr3 = 1 sin 8 

n=l 
2 ch[--case 

4% = fij n ( E 1 emnl4 I sin ne = + E ,,hs~~~~s~J2 
?I=1 

(3.3) 

Let us note that formulas of type (1.10) yield a closed solution for 
ed by forces q, along an infinite number of segments arranged at 2nR 

tion of the y = R8 axis, if the functions (3.2) are substituted in plade 

au infinite plate load- 
intervals in the direc- 

Of Eij, mj, yij* Such . . 
a plate is obtained if the cylindrical shell is represented as an infinite sheeted surface 
(roll of material) each of whose branches is loaded exactly as is the considered shell, and 
then such a surface with the loading is unrolled on a plane. If the plate is not bent (q3 = 0). 

then we have the following values of the stress resultant forces at infinity: T, = 02 and 

T, = orb and for the shear 

T1z-_[&\qlRdl]sign5. Tg=-vTI, S=-f&~q&di (3.4) 
I 

In bending the obtained results may be considered as a particular integral for an infinite 
strip with edges parallel to the y-axis. 

The principal values of the Green’s functions (3.2) permit asymptotic formulas to be ob- 
tained for strains and stresses increasing without limit to the neighborhood of the ends of 
the loading segments. Asymptotic formulas are presented below for the case when the load- 

ing is along a segment of the generator or arc of a circle. Two cases are considered sep- 

arately: 
a) When arbitrarily distributed stress resultants q1 and q2 are bounded on the segment 

a < e< b of the generator. In this case the asymptotic formulas are 

3fv i-V l-V 

Tl= F 451 %(c) ln Pi. ITz =: f 4n q1 (c) In pc, S = 7 -yg q2 (c) In pc (3.5) 

where T,, T,, S are the longitudinal end circumferential tensile forces and the shear force 
of the middle surface, respectively; pc is the distance from the point c, coincident with 

either a or b, to the point at which the forces are sought. The upper sign is taken for the 
neighborhood of the point a, and the lower for b. The forces T, and T2 due to the loading 
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q2, and also the force S due to q t, will be bounded. If the tirnctions q I and q 2 vanish at 

the endpoints of the segment, then all the forces will be bounded; 

b) The. forces pi and qZ in the neighborhoods of the endpointa a and b are, respectively 

Qj -Pj”l dC.-a. Bj=qj”/ v”-e (i=‘, 2) 
(q j” = collst) 

We obtain such a nature of the singularities, for example, for tangential forces q1 trans- 
mitted to the shell from stringrs loaded at the ends by similar forces. 

In this case 

41" a 3a a 
Tl--,Zt 

46 
3 + Y + (1 + Y) cos - co.5 

2 
;I 1 sin - 
2. 2 

a0 a 3a a 
Ta=RF 

46 
1 -Y + (1 + Y) cos - cos 

2 
21 1 sin y 

q1” 1 _1+ v a 3a a 
s1= F, vc ( 

-sin ij-sin 2 CosT 
2 1 

-Qa” 2’1 - 
i 

I+Y a 3d a 
-sin -sin - cos - 

4T/p,-v+ 2 2 2 1 2 

“* Ta~-----z 
4 VP, ( 

*+1sinZsin34 co,+ 
2 2 2 ) 

(3.6) 

where u is the angle between the segment (a, b) and a vector connecting the point a or b 
to the point .z where the appropriate force is determined. This angle is measured from the 
segment (a, 6) counter-clockwise if z belongs to the neighborhood of the point a and clock- 
wise if z belongs to the neighborhood of the point b. As before, the upper sign is taken for 
the point a in formulas with the double sign. 

Formulas (3.5) and (3.6) remain valid even for forces acting along the segment of an arc 
if I’,, T,, S, ql, qz are replaced by T,, T,, -S, q2, -qlr respectively. 

The behavior of the moments in the neighborhood of the points a and b of the shell chan- 
ges when one version of the theory is replaced by another. When using different versions of 
the “exact” theory, the nature of the singularities will be the same as for the forces, how- 
ever, the asymptotic formulas will differ for the different modifications. If we start from shal- 
low shell theory, the moments due to the forces qt and q2 will be bounded. Under the effect 
of radial forces q3 the membrane stresses will be bounded, there are no moments. 

Let us note that the asymptotic Formulas (3.5) and (3.6) are identical to the correspond- 
ing formulas for plates. In the particular case when gt and q2 are constants, Formulas (3.5) 

agree with the Formulas in 161. 

4. In investigating the state of stress of cylindrical shells reinforced by stringers or 
frames which take on the external forces, the problem of determining the forces in such kind 
of stiffness elements, and the forces being transmitted from the stiffness elements to the 
shell has to be considered. In this case the loadings q, in formulas of type (1.10) are sought. 
From the conditions of the connection between the stringers, frames and the shell it is pos- 

sible to obtain integral equations to find the forces 9,. These equations are often singular 
because of the singularity of the Green’s functions eij, which are defined in this case on 
the line of action of the loading on the generator or arc of a circle. In similar problems it is 
especially important to isolate the principal value of the Green’s function since this affords 
an opportunity to utilize the well developed theory of singular integral equations. The authors 
used such a procedure in examining loading transmission from stringers to a shell. Let us 
simplify the form of the principal values of the Green’s functions so that they could con- 
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veniently be used in connection problems. 

It csn be shown that the asymptotic equality 

is valid in the neighborhood of the point c= 0. 
Taking account of this equality, the following can be taken on the generator o= 0 in 

place of the asymptotic formulas (3.2): 

The functions ElaO (E), ~0~” (g), ~22’ (g) equal zero at 0 = 0. 
From (3.2) we find on the arcs of the circle t= 0 

n(l+v) 8 
e12O (8) = ---jg-- ctg ‘z- , E2s0 = - 

n(3--v) 8 

16 ctg g 

(3.7) 

(3.8) 

n(l-v) e 
OIQ (e) = - 7 cthy, x13O (6) = x2*O (e) = - ’ (i,T ‘) In (2 sill+) 

The functions Ella, .ssroo, 0~~ equal zero at t= 0. 

Integral equations with kernels of the form (3.7) may be solved either directly or by re- 
duction to equations with a Cauchy kernel. The theory of equations with the kernels (3.8), 
namely, equations with Hilbert kernels, has also been well worked out. 
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